Daniel J. Bernstein
Congratulations on initiating a standardization effort for post-quantum
cryptography. In general the effort sounds useful and carefully planned,
[bookmark: _GoBack]and I look forward to providing whatever assistance I can.

I have comments on several topics, which I have tried to sort here into
decreasing order of importance.

1. Quantitatively comparing post-quantum public-key security levels is
going to be a nightmare. I see only two ways that submitters a year from
now can possibly be "confident that the specified security target is met
or exceeded": (1) overkill; (2) overconfidence. Many users will not be
satisfied with overkill, and NIST should not encourage overconfidence.

For comparison, let's ignore quantum computers for a moment. Imagine
asking someone to choose DSA key sizes to be confident about reaching a
pre-quantum 2^256 security target, the largest number in NIST's list of
preselected security levels. Should be easy, right?

Here are some costs in the literature for computing multiplicative-group
discrete logarithms by NFS index calculus, and thus breaking DSA:

 * Exponent 2.080 from 1992 Gordon. What I mean here is that the cost
 is asymptotically L^(2.080...+o(1)), assuming standard conjectures,
 with the usual definition of L in NFS.

 * Exponent 1.922 from 1993 Schirokauer.

 * Exponent 1.901 from 2003 Matyukhin.

 * Exponent 1.442 per target from 2006 Commeine--Semaev, after
 per-prime precomputation with exponent 1.901.

 * Exponent 1.231 per target from 2013 Barbulescu, after per-prime
 precomputation with exponent 1.638, after one-time precomputation
 with exponent 1.901. (I doubt that 1.231 is optimal.)

All of these are exponents in an unrealistic model of computation where
storage and communication are free. In a realistic model, I presume that
1.901 would go up to 1.976 by an adaptation of a factorization algorithm
that I published in 2001, and 1.638 would go up to 1.704 for a batch of
targets by an adaptation of my 2014 "Batch NFS" paper with Lange. I
don't know what would happen to the 1.231.

One might try to argue that the 1.901 and 1.976 have been stable for a
decade, and that multi-target attacks don't matter. But NIST's call
explicitly, and sensibly, asks for "resistance to multi-key attacks".
Multi-target attacks _do_ matter, and the current _exponent_ for the
security of DSA against these attacks is only three years old.

Furthermore, a closer look shows that there are many more improvements
that reduce concrete attack costs by reducing the "o(1)" quantities.
Sloppily replacing o(1) with 0, as NIST apparently did to obtain its
current recommendation of 15360 bits for DSA for >=2^256 security, is
unjustified. Even for the simple case of single-key attacks, figuring
out the o(1) with moderate precision at such large sizes is a difficult
research project, extrapolating far beyond experimental ranges. At this
point I wouldn't hazard a guess as to whether NIST's 2^256 is an
overestimate or an underestimate.

If someone makes enough progress on this research project to announce
that the single-key attack cost is actually between 2^245 and 2^250,
will NIST withdraw its DSA standard? (What if there is a 2^100 attack
against RSA-2048, rather than the commonly quoted 2^112?) If not, then
what exactly is the point of asking people to be "confident" that 2^256
is "met or exceeded"? More to the point, experts are _not_ confident,
even when multi-target attacks are ignored.

Some people are even more worried by the recent drastic reduction of
security levels for pairing-based cryptography, by other index-calculus
optimizations. Fortunately, DSA conservatively chose prime fields,
avoiding the subfield/automorphism structures exploited in the latest
attacks (and in the most complicated previous variants of NFS---one of
the warning signals that led ECRYPT to recommend prime fields a decade
ago). But the bigger picture is that index calculus is complicated and
constantly improving. Would it really be so surprising to see another
security loss that _does_ affect DSA?

keylength.com reports some sources making recommendations around the
same 15360-bit level recommended by NIST, but also reports Lenstra and
Verheul recommending 26000 or 50000 bits. The big difference here is
Lenstra and Verheul leaving a security margin in case there is progress
in cryptanalysis.

So, with all these numbers in mind, how should we choose DSA key sizes
to be "confident" about >=2^256 pre-quantum security? Should we take
NIST's overconfident 15360 bits, which definitely flunks the multi-key
requirement, and isn't a solid bet even for a single key? How about
26000 bits? 50000 bits? Much bigger, considering Barbulescu's 1.231?
What happens if 1.231 is improved further?

What NIST is asking post-quantum submitters to figure out is far more
difficult than this DSA example, for several reasons:

 * As one would expect given the history of how cryptanalytic effort
 has been allocated, the security picture for most post-quantum
 public-key algorithms is even less stable than the security picture
 for DSA. Example: Current algorithms for the famous shortest-vector
 problem take (conjecturally) time 2^((0.29...+o(1))d) in dimension
 d, a vast improvement compared to 2^((0.40...+o(1))d), the best
 result known just a few years ago.

 * At this point we have only crude guesses as to the ultimate costs
 of different quantum operations. I understand that NIST wants to
 define 2^b post-quantum security as 2^b quantum AES computations,
 but what is the relative cost of a quantum AES computation and a
 lookup in an N-entry table using a quantum index? How does this
 depend on N? How much harder is it if the table entries are
 themselves quantum?

 * I agree with NIST's comment that a 256-bit preimage search with
 Grover is actually harder than a 256-bit collision search (even if
 qubits are magically as cheap as bits), since Grover parallelizes
 poorly. I agree that the optimum value of T*sqrt(S), subject to
 ST=2^128 and T>=sqrt(S), is 2^(2*128/3). But T*sqrt(S) is not a
 user-comprehensible cost metric, and not a metric for which many
 subroutines have been analyzed.

 * Algorithm designers benefit tremendously from being able to try out
 their algorithms on small-scale and medium-scale problems. An
 experiment can show with minimal effort that an algorithm doesn't
 produce the desired outputs, or that it doesn't run at the desired
 speed. Designers of quantum algorithms don't have this tool yet.

How is a submitter supposed to be confident of reaching, e.g., 2^128
post-quantum security? Submitters will end up making ill-informed random
guesses of which parameters to assign to which security levels. Security
analysis will then throw some submissions into the Scylla of being
"broken", while others will have thrown themselves into the Charybdis of
being "inefficient", even though those submissions might simultaneously
be _more secure and more efficient_ than other submissions that simply
happened to make luckier initial guesses of target security levels.

To summarize: Well-informed long-term security assessments will not
simply supersede obsolete guesswork. The guesswork will continue having
an influence long after it should have been thrown away. This is a
serious failure mode for the evaluation process.

Does "meet or exceed each of five target security strengths" mean that
each submission has to separately target all five levels, giving
designers five chances to be artificially thrown into the rocks? Is it
enough to target just the top level, namely 2^256 pre-quantum security
and 2^128 post-quantum security?

I found it particularly striking that this choice of top target security
level was based on the security achieved by a secret-key system (in this
case AES-256, for some reason ignoring multi-target attacks), rather
than on any attempt to assess what users actually need. I'm reminded of
the ludicrous requirement of 2^512 preimage resistance for SHA-3,
forcing permutation-based SHA-3 submissions such as Keccak to be much
larger and slower than they would otherwise have been.

If a public-key system naturally has 2^2b pre-quantum security and more
than 2^b post-quantum security (I predict that this will be a common
case), then choosing parameters to successfully target 2^256 pre-quantum
security will be overkill for 2^128 post-quantum security---and also
overkill for what users actually need. Why is this a sensible target?

If a public-key system naturally has 2^b post-quantum security and more
than 2^2b pre-quantum security (I know one example like this), then
choosing parameters to successfully target 2^128 post-quantum security
will be overkill for 2^256 pre-quantum security. Why should the designer
have to bother evaluating the pre-quantum security level?

Let me suggest a different approach:

 * Leave it up to submitters to decide exactly what post-quantum
 security level to aim for.

 * Tell them that security levels <2^64 will be viewed as "breakable",
 and that security levels >2^128 are unlikely to be viewed as more
 valuable than security level 2^128, except possibly as a buffer
 against future cryptanalytic progress.

 * Ask them to do the most accurate job that they can of analyzing
 post-quantum security. Don't ask for fake confidence.

 * Scrap the requirement of a pre-quantum security analysis. Users
 will use cheap ECC hybrids to obtain the pre-quantum security that
 they want.

Of course, many submissions will do a pre-quantum security analysis and
then say "We don't think Grover will reduce the exponent by a factor
beyond 2". Is there any problem with this? Should the number of
submissions be limited by the current availability of expertise in
quantum cryptanalysis?

Followup analysis will improve our understanding of the actual
post-quantum security levels of various algorithms, and then NIST will
look at a two-dimensional plot of speed vs. security level and decide
which options are most interesting.

2. My understanding is that NIST is asking for two specific types of
encryption, which NIST labels as "public-key encryption" and "key
exchange". This is too narrow: it omits important variants of public-key
encryption that people should be allowed to submit.

What I suspect will be most important in the long run is a CCA2-secure
"KEM". A KEM can be viewed as a limited form of public-key encryption:
the only thing a ciphertext can do is communicate a random session key.
As a simple pre-quantum example, Shoup's "RSA-KEM" chooses a random
number r mod pq and transmits a session key SHA-256(r) as the ciphertext
r^3 mod pq. This is easier to design and analyze and implement than,
say, RSA-OAEP.

(Proponents of RSA-OAEP will respond that RSA-OAEP can encrypt a short
user-specified message as a ciphertext with the same length as pq. Some
applications will notice the bandwidth difference. Obviously NIST should
continue to allow public-key encryption as a target.)

One can easily combine a KEM with an authenticated cipher to produce a
full-fledged public-key encryption scheme. But this understates the
utility of a KEM: the same session key can be reused to encrypt any
number of messages in both directions, whereas wrapping the KEM in a
public-key encryption scheme hides this functionality. Using this
public-key encryption scheme to encrypt another level of a shared
session key would be frivolous extra complexity. Why not let submitters
simply submit a KEM, skipping the cipher?

Sometimes people reduce the security goals and design KEMs to encrypt
just one message, _without_ chosen-ciphertext security. Here is the
application to keep in mind:

 * a client generates a KEM public key;
 * a server uses this to transmit a random session key;
 * messages are signed by long-term keys for authentication;
 * the KEM private key and session key are erased after the session.

This is how New Hope works inside TLS. The signatures (if handled
properly) prevent attackers from choosing any ciphertexts. So why not
let people submit single-message non-CCA2-secure KEMs?

(I don't like the TLS/SIGMA approach to secure sessions: it is
error-prone and excessively complex. This is not a broadcast scenario;
authentication does not require signatures. I prefer the simplicity of
using pure encryption: the long-term key is an encryption key, and the
soon-to-be-erased short-term key is another encryption key. This
requires multiple-message support and CCA2 security, but my current
impression is that this robustness has only minor costs, and I wouldn't
be surprised if the New Hope team decides to move in this direction.
However, if they instead decide that CCA2 security is too expensive,
they shouldn't be rejected for targeting TLS!)

What NIST calls "key exchange" in the draft sounds to me like a poorly
labeled KEM with intermediate security requirements: chosen-ciphertext
security seems to be required, but the interface sounds like it allows
only one message before the key is thrown away. NIST should make clear
if it instead meant a full-fledged KEM allowing any number of
ciphertexts. Either way, NIST should explicitly allow non-CCA2-secure
single-message KEMs such as New Hope.

Calling any of these systems "key exchange" is deceptive for people who
expect "key exchange" to be a drop-in replacement for DH key exchange.
In DH, Alice and Bob both know a shared secret as soon as they see
public keys from Bob and Alice respectively, with no additional
communication. As a concrete example, consider the very small number of
network round trips needed to efficiently authenticate data from hidden
client identities in the "CurveCP" and "Noise_XK" protocols. Here's
Noise_XK using ECC:

 * Alice sends her ephemeral public key eG to Bob. New session key:
 hash of ebG, where b is Bob's long-term key.

 * Bob responds with his ephemeral public key fG, encrypted and
 authenticated. New session key: hash of ebG and efG.

 * Alice sends her long-term public key aG to Bob, encrypted and
 authenticated. New session key: hash of ebG, efG, and afG.

This third packet can already include data authenticated under the last
session key, and Bob immediately knows that the data is from Alice. Pure
public-key encryption (without signatures) needs another round trip for
authentication: Bob has to send data to Alice's long-term public key and
see the reply before Bob knows it's Alice talking.

There is one notable post-quantum example of the DH data flow, namely
isogeny-based crypto. Security analysis of isogeny-based crypto is
clearly in its infancy, but if isogeny-based crypto does survive then
the data flow will be an interesting feature. People who submit
isogeny-based crypto should be allowed to submit it in a way that makes
this data flow clear, rather than having to wrap it in public-key
encryption.

I understand that for signatures NIST explicitly decided to disallow one
data flow of clear interest, namely stateful signatures, since there is
already separate ongoing standardization of stateful hash-based
signatures, which are the main reason for interest in this data flow.
(The security of hash-based signatures is much better understood than
the security of most other public-key systems.) But for encryption I
don't see how a similar limitation could be justified.

To summarize, there are at least three clearly different types of data
flow of interest: public-key encryption, KEMs, and DH. Within KEMs,
there are at least two security targets of interest: passive security
for one message, and chosen-ciphertext security for many messages. I
suggest that NIST explicitly allow

 * all four of these targets;
 * also the intermediate type of KEM labeled as "key exchange" in the
 current draft, if NIST has an application in mind; and
 * any further encryption targets that NIST identifies this year as
 being useful.

I also suggest defining some standard conversions that NIST will apply
automatically: e.g., converting a CCA2-secure KEM into CCA2-secure PKE
by composition with AES-256-GCM, and converting the other way by
encrypting a random 256-bit key. NIST won't want to listen to pointless
arguments such as "yes we know we're worse than this PKE but it wasn't
submitted to the KEM category" from KEM submitters, and won't want to
have to wade through artificially bloated PKE+KEM submissions that are
really just one design but want to compete in every category.

3. I have three suggestions regarding terminology.

First, the draft refers frequently to "key exchange", which as noted
above ends up deceiving people. I suggest scrapping this terminology in
favor of more precise terminology such as KEM and DH. (There's already a
NIST standard introducing relevant names such as "C(0,2)", but I don't
know how many people are familiar with these names.)

Second, the draft uses "forward secrecy" (even worse, "perfect forward
secrecy") to refer to the obvious security benefits of erasing a private
key. This terminology also ends up deceiving people. Last week I was
speaking with a banker who thought that TLS's "perfect forward secrecy"
would protect his communications against future quantum computers. I
suggest avoiding this terminology and instead saying something like
"Fast key generation is useful for high-frequency generation of new key
pairs, which in turn allows each private key to be promptly erased."

Third, the draft says that post-quantum cryptography is "also called
quantum-resistant or quantum-safe cryptography", and makes occasional
use of the "quantum-resistant" terminology after that. It's true that
Google finds some hits for "quantum-resistant cryptography" and
"quantum-safe cryptography" (1630 and 4340, compared to 47100 for
"post-quantum cryptography"), but I'm not at all sure that the people
using these terms are using them with the same meaning as post-quantum
cryptography, and I predict that users seeing algorithms labeled as
"resistant" and "safe" will be deceived into thinking that we are more
confident than can be scientifically justified.

As a concrete example, research by Makarov et al. has convincingly shown
that ID Quantique's QKD products are breakable at low cost, but one of
the top hits for "quantum-safe cryptography" appears to refer to those
products as "provably secure quantum-safe" cryptography. I presume that
snake-oil peddlers choose this terminology precisely because it is
deceptive; for the same reason, I suggest that NIST avoid the
terminology. As an analogy, FIPS 186-4 has the sensible title "Digital
signature standard", not "Safe digital signature standard" or
"Attack-resistant digital signature standard".

4. Requiring submissions to be sent by postal mail will penalize some
submitters for reasons that are not connected to the quality of their
submissions. For example, as far as I know, the lowest-cost way to
guarantee two-day delivery of a 1kg package from Bangalore to NIST is a
Fedex International Priority Pak, which costs half a week's salary for a
typical Indian professor.

I understand that NIST needs a signed printed statement regarding
patents etc., but this statement is not urgent: it can be sent by mail
later, or hand-delivered to NIST at the first workshop.

On a related note, requiring fax numbers and telephone numbers is silly.

5. The draft needs a general round of proofreading. For example, Wiener
is not "Weiner", the JoC97 link does not work, and 4.B.4 is incomplete.

Tanja Lange
Comments on "Proposed Submission Requirements and Evaluation Criteria
for the Post-Quantum Cryptography Standardization Process", draft from August 2016
Tanja Lange

In general I'm positively impressed with the document and how it reflects discussions
e.g. during the PQCrypto workshop. In the following I will raise one major and one
minor issue and then give some detailed comments and suggestions. Please feel free to contact me if any of this is unclear.

The current document is still inconsistent in what categories NIST is asking for
submissions. This matches the discussions in February when it was left open whether
NIST would ask for a key exchange mechanism. The current document first speaks of
'key exchange' and later of 'key establishment'. The API documentation uses both
words interchangeably.

It should be made clear what precisely is asked for. Most people understand key
exchange to match the functionality that Diffie-Hellman key exchange is offering:
two keypairs determine a shared secret without communication; keys can be reused,
e.g. A's published key can lead to a shared secret with Bob, using Bob's public
key, and one with Charlie, using Charlie's public key. This is the functionality
matching eBACS's DH function API: given one public key and one secret key, compute
the shared key.

The functionality described early in the draft call for proposals changes this to
distinguish between an initiator message and a responder message. This does not
match common understanding of key exchange, which is also why the eBACS API does
not fit.

Later on the call document -- now speaking about key establishment -- highlights the
desired result: key transport and forward secrecy. The latter implies that new public
keys must be generated frequently, requiring efficient key generation and small key
sizes for transmission. I think it makes much more sense to ask for submissions for
this scenario and a scenario with long-term public keys instead of asking for
submissions for key exchange and encryption.

Realistically, public-key encryption is used only to transmit a key which is then
used in a symmetric cipher; this is also recognized in the call document. The formal
treatment of this is most advanced in the KEM/DEM framework: the public-key system is
used as a key-encapsulation mechanism, which ensures that sender and receiver obtain
the same key, and that key is then used in the data-encapsulation mechanism to encrypt
the message. This avoids issues of padding.

To summarize, I recommend asking for submissions for two types of KEM:
* KEMs in which the receiver has a long-term public key; obtaining the key is outside
 the scope of specifying the KEM and
* KEMs in which at least one side generates and transmits a fresh public key.
instead of submissions for encryption and key exchange/establishment.

The second type of KEM scheme should be efficient enough that keys can be generated
for each key transport, but ideally not break down completely if keys are reused. It
would be good for the submitters to specify how key reuse would affect the security
of their system. I understand that the latter might be captured under the property
of 'robustness'.

The minor issue is that I would recommend to request a constant-time implementation
of each retained algorithm in the second round. Timing attacks are one of the most
basic and thus most powerful attacks and each implementation (in software or
hardware) needs to be protected against it. The call currently says that you'll take
ease of SCA protection into account; that will be much easier and more meaningful
if the submitter has to send in a protected implementation. This might be seen as a
burden by some, so I wouldn't require it as part of the submission package, but each
proposer group can get help by the time the second round comes along.

Editorial comments:

p.2 "in the event that large-scale quantum computers" should be replaced by
"to prepare for the event that large-scale quantum computers" (or similar).
It is too late to change once a QC is built. Even if long-term security is
not a concern, roll out would take too long. (This is captured well a few
paragraphs further down but confusing here).

p.4 It is unusual for key-exchange schemes to distinguish between initiator
and responder messages. It is normal to request that the scheme defines a
shared secret for each pair of public keys. If the definition is different this
should be stated early on. It might be that you're instead asking for public-key
encryption schemes for one-time use public keys with fast key generation (which
is different from the typical DH message flow). See above.

p.5 In case a submitter has submitted his implementation to eBACS there will
be benchmarks on a multitude of processors. Describing all the platforms and
all the results would unnecessarily blow up the submission document. I
recommend to allow inclusion by reference to the page for the primitive on
bench.cr.yp.to. Of course, the submitter should still be free to highlight
some processors and implementations if he chooses to and then be required to
describe the platform, so this is a suggestion to permit a reference in
addition.

p.7 Do you really want to receive all pdf files of papers or are links to
public versions of the paper sufficient? Can people set up a webpage with
supplemental material including links? I foresee a problem with copyrights:
authors usually have the right to put their author copy online; if their
work is relevant to my submission, I can put a link to their work on my
homepage without violating any copyright, but I cannot submit the paper to
NIST and make a statement about the copyright. This basically means that I
cannot use papers published by others.

What do you mean by "unusual vulnerabilities"? Would this be e.g. key reuse
in a scheme where decryption failures can be used to determine the secret
key? or the fragility in ECDSA with nonce reuse? It would be good if you
could be more specific.

For the avoidance of doubt, please specify whether assembly subroutines or
intrinsics are acceptable.

p.10 "the quantum-resistant algorithm evaluation process": elsewhere you've
changed to 'post-quantum' so I suggest to adjust the phrasing here to match.

p.13 Same comment regarding key exchange being asymmetric in initiator and
responder as above.

p.16 You mean 2^k executions of AES on the given architecture? See the detailed
analysis of the costs of using Grover on AES (PQCrypto 2016); are you considering
the estimated cost of 2^32 to equal 1? I've seen the FAQ on this topic, but that
didn't help. Some algorithms suffer much more from requiring the steps to be
reversible than others, so it will be necessary for cryptographers to understand
quantum algorithms in any case.

In principle this is not a new problem -- 1 ECC operation is not the same an
an AES operation and we don't even know how to define the exact security level
of elliptic curves. Counting operations in quantum algorithms is at least as
hard.

While I think that we cannot reach a way of comparing security between AES
and post-quantum systems, I strongly suggest that systems using similar primitives
count their efficiency the same way, e.g. code-based systems against which
information-set decoding is the most efficient, should have a consistent way of
using the cost of one loop; same for lattice-based systems using sieving. These
ways might not be accurate in the end, but at least they allow comparisons within
one class of algorithms. Eventually it is necessary to compare systems across
different primitives, but by then more detailed research on current and quantum
attacks will have happened.

p.17 I often encounter practitioners who take "perfect forward secrecy" to mean
that a later attack cannot do harm and misunderstand it to mean that they can
continue to use ECC till quantum computers arrive. They are surprised when they
understand that having the public messages + keys is enough to later on break
the scheme with a quantum computer. Due to this confusion I have started to
use "key erasure" for this concept; given that this is not yet a common term it
is necessary to add a parenthetical comment "(also known as perfect forward
secrecy)" for now.

Please be more specific when referring to this concept. Do you accept schemes
that become insecure if the same key is reused or do you mean to ask for schemes
which have very fast key generation time and do not require much space for the
key transmission?

p.17 While it is grammatical to say 'resistance to side-channel attack' I would
suggest to use the plural 'attacks' here, because there are many different
attacks and a system might not be equally defendable against all of them. It
might be useful to include a ranking of what types of attacks must be covered,
e.g. timing attacks are applicable in significantly more situations than power
analysis.

Regarding multi-key attacks: a brute force attack is always sped up when many
targets can be attacked; you might want to specify that this would be with
respect to the best attack or be more precise in the 'an advantage'. Also it
depends on the number of available keys -- after very many keys, brute force
search might be the best possibility, so limiting to 2^64 or 2^96 keys seems
reasonable.

The 'compromise a single key pair' case could be made more precise: I assume
you mean attack any single key, so 1 out of n vs. n out of n; using a bit of
notation should help here.

"established body of cryptographic research" is too narrow and excludes work
done in number theory or complexity theory which studies the same problems
but at different venues (compare to RSA drawing on the body of factorization
research, which gets published in crypto venues, but also at ANTS, Math Comp,,
and other journals).

p.18 same comment regarding "perfect forward secrecy" vs "key erasure"
(twice)

4.B.4: I assume that this text deals with accidental decryption failures
which are a nuisance and should thus be avoided. I suggest adding that you
consider attacks using decryption failures as attacks, if failures are
sufficiently common or can be triggered by an attacker.

Nitpick: what do you mean by 'encrypting the same _cipher_text'? Btw. I'm
not sure that one can always reach _acceptable_ rates, this really depends
on how bad the scheme is.

p.20 "All proposed changes must be proposed by the submitter;" I would add that
the submitter can submit implementations prepared by third party with the
permission of the third party. At least my understanding is that you want to
ensure that the proposer endorses the implementation, but it is not necessary
for the implementer to become part of the proposers team.

Other files:
kat.pdf still includes instructions to Sara. (twice).

api-notes.pdf:
Skipping most comments because the specifications of what is wanted are
still not fixed.

Please note that the supercop benchmarking framework generates KATs from
submissions; submitters can also specify these in a separate file. This means
that you don't need to change the API to include those.

e e et ot S o

1 Gty g s sty i
o s 2
i s

fos gt

e S ok e o ot DA

ey L o e o s

o A ot 5wk b
ey S 2o NS L
et

